
CC/CD 51003:2018

Calendaring and scheduling — Support
for Series in iCalendar

THE CALENDARING AND SCHEDULING CONSORTIUM

TC CALENDAR

Michael Douglass AUTHOR

CALCONNECT STANDARD

COMMITTEE DRAFT

WARNING FOR DRAFTS

This document is not a CalConnect Standard. It is distributed for review and
comment, and is subject to change without notice and may not be referred to as a

Standard. Recipients of this draft are invited to submit, with their comments,
noti�cation of any relevant patent rights of which they are aware and to provide

supporting documentation.

© 2018 The Calendaring and Scheduling Consortium, Inc.

All rights reserved. Unless otherwise speci�ed, no part of this publication may be reproduced or
utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be
requested from the address below.

The Calendaring and Scheduling Consortium, Inc.
4390 Chaffin Lane
McKinleyville
California 95519
United States of America

copyright@calconnect.org
www.calconnect.org

mailto:copyright@calconnect.org
file:///home/travis/build/CalConnect/standards.calconnect.org/csd/www.calconnect.org

CONTENTS
Foreword

Introduction

1. Scope

2. Normative references

3. Terms and de�nitions

4. Overrides and iCalendar recurrences

4.1. Changing the master start or the recurrence rules

4.2. Splitting recurrences

5. Series

5.1. Modifying series patterns and splitting

5.2. The series master

5.3. The series instances

6. Rede�ned Relation Type Value

7. New Property Parameters

7.1. Split

7.2. Lookahead count

7.3. Lookahead period

8. New Properties

8.1. General

8.2. Generating Series members

8.3. Series UID

8.4. Series-exception-date

8.5. Series-date

8.6. Series-id

8.7. Last series ID

8.8. Series Rule

9. Rede�ned RELATED-TO Property

9.1. RELATED-TO

10. Backwards compatibility

11. CalDAV extensions

12. IANA Considerations

12.1. iCalendar Property Registrations

12.2. iCalendar Property Parameter Registrations

12.3. iCalendar RELTYPE Value Registrations

13. Acknowledgements

Appendix A(informative) Points for discussion

A.1. Detecting changes from old clients

A.2. Splitting and linking

A.3. CalDAV queries

Appendix B(informative) Change log

Bibliography

FOREWORD
The Calendaring and Scheduling Consortium (“CalConnect”) is a global non-pro�t
organization with the aim to facilitate interoperability of collaborative technologies and
tools through open standards.

CalConnect works closely with international and regional partners, of which the full list is
available on our website (https://www.calconnect.org/about/liaisons-and-relationships).

The procedures used to develop this document and those intended for its further
maintenance are described in the CalConnect Directives.

In particular the different approval criteria needed for the different types of CalConnect
documents should be noted. This document was drafted in accordance with the editorial
rules of the CalConnect Directives.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. CalConnect shall not be held responsible for identifying any or
all such patent rights. Details of any patent rights identi�ed during the development of the
document will be provided in the Introduction.

Any trade name used in this document is information given for the convenience of users
and does not constitute an endorsement.

This document was prepared by Technical Committee CALENDAR.

https://www.calconnect.org/about/liaisons-and-relationships

INTRODUCTION
Since iCalendar was �rst de�ned there has been only one way to express a repeating set of
events - the recurrence. This de�ned a master event, a set of rules for computing the
instances and a way of overriding certain instances.

This approach works well enough in certain situations but has many problems which need
to be addressed.

This speci�cation introduces a new approach to repeating patterns of entities which avoids
some of the problems.

1. SCOPE
This document updates RFC 5545 by de�ning a new repeating set of events known as a
series. This differs from recurrences in that each instance is a separate entity with a
parent relationship to a speci�ed template entity.

2. NORMATIVE REFERENCES
The following documents are referred to in the text in such a way that some or all of their
content constitutes requirements of this document. For dated references, only the edition
cited applies. For undated references, the latest edition of the referenced document
(including any amendments) applies.

— IETF RFC 3986, Uniform Resource Identi�er (URI): Generic Syntax

— IETF RFC 5545, Internet Calendaring and Scheduling Core Object Speci�cation
(iCalendar)

— IETF RFC 5988, Web Linking

— IETF RFC 6638, Scheduling Extensions to CalDAV

— IETF RFC 7986, New Properties for iCalendar

— IETF I-D.daboo-caldav-attachments, CalDAV Managed Attachments

— W3C REC xml-20060816, World Wide Web Consortium Recommendation REC-xml-
20060816: Extensible Markup Language (XML) 1.0 (Fourth Edition), Bray, T., Paoli, J.,
Sperberg-McQueen, M., Maler, E., and F. Yergeau, August 2006,
http://www.w3.org/TR/2006/REC-xml-20060816.

— W3C WD xptr-xpointer-20021219, Steven DeRose, Ron Daniel, Eve Maler. XPointer
xpointer() Scheme. 2002. http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219 Z

http://www.w3.org/TR/2006/REC-xml-20060816
http://www.w3.org/TR/2002/WD-xptr-xpointer-20021219

3. TERMS AND DEFINITIONS
No terms and de�nitions are listed in this document.

4. OVERRIDES AND ICALENDAR RECURRENCES
The recurrence rules specify how instances are to be computed. These rules provide a set
of keys - the RECURRENCE-ID - and an instance can be created with the calculated start
date/time and a copy of the duration (or calculated end date/time).

The speci�cation allows for overrides. These are handled by supplying a complete
replacement for the instance with a RECURRENCE- ID property matching that of the
instance being overridden. This may change any of the properties (except the UID) -
including start, end or duration.

If a long lived recurrence is heavily overridden it becomes very cumbersome. The master
plus overrides is considered a single resource in most circumstances (iTip allows the
delivery of a single instance in certain situations).

Simple meetings can become heavily modi�ed recurrences through adding the weeks
agenda to the description, changing of attendees etc.

There are approaches being considered to mitigate some of these issues which mostly
involve only storing changes but recurrences are still awkward to deal with.

4.1. Changing the master start or the recurrence rules

This can lead to some very dif�cult problems to resolve. In the case of a heavily modi�ed
meeting it may be dif�cult to impossible to determine which override applies to the newly
modi�ed event.

For example, a weekly book-reading is moved from Monday to Friday. There are weeks of
scheduled events in the future. Do we move them all forward to the next instance or skip
one and move them back? If it becomes bi-weekly rather than weekly do we drop every
other or just space them out more?

To be sure - some of these problems are not totally resolved by a series approach but they
become more tractable.

4.2. Splitting recurrences

The RFC 5545 THISANDFUTURE range is poorly supported. Splitting is what a number of
implementations use to avoid changing overrides in the past.

The recurring event is split into 2, one being the truncated original the other being a new
recurring event starting at the time of the THISANDFUTURE override.

There is left the problem of relating the two, this can be accomplished by use of the
RELATED-TO property but that is not standardized.

5. SERIES
A series is a, generally regularly, repeating sets of events or tasks each instance of which is
usually, but not always, different in some respect. Examples may be a library running an
after-school reading program which usually, takes place at the same time each week but
always differs in the book or author being studied.

In recurrences an instances is a calculated ‘virtual’ object, unless overridden. It has the
same UID as the master and a RECURRENCE-ID which is always one of the calculated set.

In a series, a speci�ed number of instances are created ahead of time each with their own
unique UID. They are all related to the master using a SERIES-MASTER relation type
de�ned in this speci�cation. Each instance acts as an individual component as far as
retrieval and searching is concerned.

Each instance and master is identi�ed as a member of the full series by the SERIES-UID
property. The value of this property is the same in all members of the series even when
splits have occurred.

As instances are created a LAST-SERIES-ID property is added or updated in the master to
indicate which instance was last created. When there are SXDATE properties this property
value may represent an instance which cannot be created. It merely represents the latest
calculated date.

This property allows generated instances to be deleted without the addition of SXDATE
properties to the master. The SXDATE only indicates future instances which MUST NOT be
created.

As time goes on more instances are created either by the server or by a client when it
inspects the current state of the series. The number of instances may be based on time or
a count.

For example, an organization may allow rooms to be booked only 4 weeks ahead. Thus a
series may be set up which has that 4 week set of events in the future. Each will have the
room as an attendee ensuring that at least the room is booked at the regular time.

5.1. Modifying series patterns and splitting

If it becomes necessary to modify the series rules or the master start then the series is
always split at the point of the modi�cation.

When a series is split the previous master is modifed to truncate the current series at the
last generated instance and a parameter SPLIT=YES is added to the series rule to indicate
that this master is now split.

The split may result in a number of instances related to the old series but overlapping the
new. It is up to the implementation to decide what should be done with these but this
usually requires a degree of interaction with a human (or very intelligent robot). The
application may offer to copy them into the corresponding new instances - if these can be

easily determined, offer to delete all of them or let the user manually copy information and
delete.

The new series master is related to the old master by the new series master having a
RELATED-TO property with RELTYPE=SERIES-MASTER pointing at the previous master.
In that way a backwards chain of series masters may be created

5.2. The series master

A series master is identi�ed in much the same way as a recurrence master. It will contain
an SRULE and 0 or more SDATE properties or 1 or more SDATE properties. Additionally it
may contain 0 or more SXDATE properties to exclude instances.

As noted above, if the series was split it may contain a RELATED-TO property with
RELTYPE=SERIES-MASTER and a value of the previous series master.

The master will also contain a LAST-SERIES-ID if any instances have been calculated and
perhaps generated.

It is important to note that the series master is the �rst member of the series. Thus the
�rst instance always occurs AFTER the series master.

5.3. The series instances

A series instance is identi�ed by having a SERIES-ID property which is calculated in the
same manner as a RECURRENCE-ID. It MUST also contain a RELATED-TO property with
RELTYPE=SERIES-MASTER and a value being the UID of the series master.

As noted above, if the series was split it may contain a RELATED-TO property with
RELTYPE=SERIES-MASTER and a value being the UID of the previous series master.

6. REDEFINED RELATION TYPE VALUE
Relationship parameter type values are de�ned in RFC 5545, Section 3.2.15. This
speci�cation augments that parameter to include the new relationship values SERIES-
MASTER.

Format De�nition

This property parameter is respeci�ed as follows:

reltypeparam = "RELTYPE" "="
 ("PARENT" ; Parent relationship - Default
 / "CHILD" ; Child relationship
 / "SIBLING" ; Sibling relationship
 / "DEPENDS-ON" ; refers to previous task
 / "REFID" ; Relationship based on REFID
 / "STRUCTURED-CATEGORY"
 ; Relationship based on STRUCTURED-CATEGORY
 / "FINISHTOSTART" ; Temporal relationship
 / "FINISHTOFINISH" ; Temporal relationship
 / "STARTTOFINISH" ; Temporal relationship
 / "STARTTOSTART" ; Temporal relationship
 / "SERIES-MASTER" ; link to the master component
 / iana-token ; Some other IANA-registered
 ; iCalendar relationship type
 / x-name) ; A non-standard, experimental
 ; relationship type

Description

This parameter can be speci�ed on a property that references another related calendar
component. The parameter may specify the hierarchical relationship type of the calendar
component referenced by the property when the value is PARENT, CHILD or SIBLING. If
this parameter is not speci�ed on an allowable property, the default relationship type is
PARENT. Applications MUST treat x-name and iana-token values they don’t recognize the
same way as they would the PARENT value.

This parameter de�nes the temporal relationship when the value is one of the project
management standard relationships FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH
or STARTTOSTART. This property will be present in the predecessor entity and will refer to
the successor entity. The GAP parameter speci�es the lead or lag time between the
predecessor and the successor. In the description of each temporal relationship below we
refer toTask-A which contains and controls the relationship and Task-B the target of the
relationship.

RELTYPE=PARENT See RFC 5545, Section 3.2.15.

RELTYPE=CHILD See RFC 5545, Section 3.2.15.

RELTYPE=SIBLING See RFC 5545, Section 3.2.15.

RELTYPE=DEPENDS-ON Indicates that the current calendar
component depends on the referenced
calendar component in some manner. For
example a task may be blocked waiting on the
other, referenced, task.

RELTYPE=REFID Establishes a reference from the current
component to components with a REFID
property which matches the value given in the
associated RELATED-TO property.

RELTYPE=SERIES-MASTER Indicates that the current calendar
component is based on the referenced
calendar component. The value is a UID.

RELTYPE=STRUCTURED-CATEGORY Establishes a reference from the current
component to components with a
STRUCTURED-CATEGORY property which
matches the value given in the associated
RELATED- TO property.

RELTYPE=FINISHTOSTART

Task-B cannot start until Task-A �nishes. For example, when sanding is complete, painting
can begin.

 ============
 | Task-A |--+
 ============ |
 |
 V
 ============
 | Task-B |
 ============

Figure 1 — Finish to start relationship

RELTYPE=FINISHTOFINISH

Task-B cannot �nish before Task-A is �nished, that is the end of Task-A de�nes the end of
Task-B. For example, we start the potatoes, then the meat then the peas but they should
all be cooked at the same time.

 ============
 | Task-A |--+
 ============ |
 |
 ============ |
 | Task-B |<-+
 ============

Figure 2 — Finish to finish relationship

RELTYPE=STARTTOFINISH

The start of Task-A (which occurs after Task-B) controls the �nish of Task-B. For example,
ticket sales (Task-B) end when the game starts (Task-A).

 ============
 +--| Task-A |
 | ============
 |
 ============ |
 | Task-B |<-+
 ============

Figure 3 — Start to finish relationship

RELTYPE=STARTTOSTART

The start of Task-A triggers the start of Task-B, that is Task-B can start anytime after
Task-A starts.

 ============
 +--| Task-A |
 | ============
 |
 | ============
 +->| Task-B |
 ============

Figure 4 — Start to start relationship

7. NEW PROPERTY PARAMETERS

7.1. Split

Parameter name SPLIT

Purpose To indicate a series has been split.

Format De�nition

This parameter is de�ned by the following notation:

splitparam = "SPLIT" "="
 ("YES" ; The series is split
 / "NO" ; The series is not split (default)
 / x-name ; Experimental reference type
 / iana-token) ; Other IANA registered type

Description This parameter MAY be speci�ed on the SRULE property to indicate that
the series has been split with SPLIT=YES. Once split is is probably
inappropriate to modify the series further.

7.2. Lookahead count

Parameter name LOOKAHEAD-COUNT

Purpose To specify the number of series instances that should be generated
in advance.

Format De�nition

This parameter is de�ned by the following notation:

lookahead-countparam = "LOOKAHEAD-COUNT" "=" 1*DIGIT

Description

This parameter MAY be speci�ed on the SRULE property to indicate how many series
instances should be generated in advance.

An implementation is free to apply its own limts but MUST NOT generate more than those
de�ned by this parameter and/or the LOOKAHEAD-PERIOD parameter.

If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are supplied the
result should be limited by both.

For example, if the LOOKAHEAD-PERIOD parameter would cause 8 instances to be
generated but LOOKAHEAD-COUNT speci�es 4 then only 4 instances will be generated.

7.3. Lookahead period

Parameter name LOOKAHEAD-PERIOD

Purpose To specify a maximum period for which series instances should be
generated in advance.

Format De�nition

This parameter is de�ned by the following notation:

lookahead-periodparam = "LOOKAHEAD-PERIOD" "="
 DQUOTE dur-value DQUOTE

Description

This parameter MAY be speci�ed on the SRULE property to indicate how far in advance
series instances should be generated.

An implementation is free to apply its own limts but MUST NOT generate more than those
de�ned by this parameter and/or the LOOKAHEAD-COUNT parameter.

If both the LOOKAHEAD-PERIOD and LOOKAHEAD-COUNT arameters are supplied the
result should be limited by both.

For example, if the LOOKAHEAD-PERIOD parameter would cause 8 instances to be
generated but LOOKAHEAD-COUNT speci�es 4 then only 4 instances will be generated.

The value is a quoted duration.

8. NEW PROPERTIES

8.1. General

The SERIES-ID, LAST-SERIES-ID, SDATE and SXDATE properties are identical in form and
in the parameters they take.

All must conform in form to the DTSTART property of the master component. Only the
SDATE may specify a time which is not part of the calculated series.

The SRULE property value is identical in form to the RRULE property de�ned in RFC 5545.
The LOOKAHEAD-COUNT and LOOKAHEAD-PERIOD parameters indicate how many
instances should be generated in advance.

8.2. Generating Series members

An agent, either the server or a client, will periodically extend the set of instances. The
number of such generated instances is limited by:

Elements of the rule The UNTIL or COUNT parts of the rule de�ne when the series
terminates. Thus a COUNT=100 speci�es a maximum of 100
series members.

Lookahead count This speci�es how many series members can exist from the
current date/time. Thus a LOOKAHEAD-COUNT=4 means a
maximum of 4 generated instances.

Lookahead period This speci�es how far into the future series members can be
generated. Thus a LOOKAHEAD-PERIOD=”PT2M” means a
maximum period of 2 months.

System limits This client or server SHOULD also apply limits to prevent a
series from generating an overlarge set of members.

The starting point for the calculation is the DTSTART of the master component or the
LAST-SERIES-ID if it exists in the master. In both cases the instance represented by that
date is NOT generated as part of the instance set and the actual instance may have been
excluded by an SXDATE property but the starting date is still valid.

The starting date/time property de�nes the �rst instance in the next batch of series
members. Note that the starting property value MUST match the pattern of the series
rule, if speci�ed. For example, if the rule speci�es every Wednesday the starting date
MUST be a Wednesday.

The end date/time of the set will be provided by the UNTIL part of the rule, the
LOOKAHEAD-PERIOD or by a system maxima.

A set of date/time values can be generated within those contraints. As each date/time
value is generated it can be ignored if it is one of the SXDATE values.

Generation of values can terminate when the size of the result exceeds that given by the
COUNT rule element, the LOOKAHEAD-COUNT value or any system limit.

Any SDATE values that fall within the current range and are not in the set of SXDATE
values can be added and the result truncated again to match the size limits.

Finally, any date/time values that have already been generated and are present as
SERIES-ID values should be removed from the set. What remains is the new set of
members to extend the current series.

The last of those values becomes the new value for the LAST-SERIES-ID property in the
series master.

As noted above the “SXDATE” property can be used to exclude the value speci�ed in the
master. This leads to a complication as the master needs to be preserved as a container for
the values which de�ne the series. This is �agged by adding a DELETED-MASTER element
to the SERIES-STATUS property.

8.3. Series UID

Property name SERIES-UID

Purpose This property de�nes the persistent, globally unique identi�er
for the full series.

Value Type TEXT

Property Parameters IANA and non-standard property parameters can be speci�ed
on this property.

Conformance This property MUST be speci�ed in any “VEVENT”, “VTODO”,
and “VJOURNAL” calendar components acting as a series
master or series instance.

Description The SERIES-UID MUST be globally unique. This value SHOULD
be generated by following the recommendations in RFC 7986,
Section 5.3.

Format De�nition

This property is de�ned by the following notation:

seruid = "SERIES-UID" seruidparam ":" text CRLF

seruidparam = *(";" other-param)

EXAMPLE
The following is an example of this property:
SERIES-UID:123e4567-e89b-12d3-a456-426655440000

8.4. Series-exception-date

Property name SXDATE

Purpose This property de�nes the list of DATE-TIME exceptions for
series of events, to-dos or journal entries.

Value Type The default value type for this property is DATE-TIME. The
value type can be set to DATE.

Property Parameters IANA, non-standard, value data type, and time zone identi�er
property parameters can be speci�ed on this property.

Conformance This property can be speci�ed in “VEVENT”, “VTODO”, and
“VJOURNAL” calendar components acting as the series
master.

Description The exception dates, if speci�ed, are used when computing the
instances of the series. They specify date/time values which
are to be removed from the set of possible series instances.

Format De�nition

This property is de�ned by the following notation:

sxdate = "SXDATE" sxdtparam ":" sxdtval *("," sxdtval) CRLF

sxdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE")) /
 ;
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

sxdtval = date-time / date
 ;Value MUST match value type

EXAMPLE

The following is an example of this property

SXDATE:19960402T010000Z,19960403T010000Z,19960404T010000Z

8.5. Series-date

Property name SDATE

Purpose This property de�nes the list of DATE-TIME values for series of
events, to-dos or journal entries.

Value Type The default value type for this property is DATE-TIME. The
value type can be set to DATE.

Property Parameters IANA, non-standard, value data type, and time zone identi�er
property parameters can be speci�ed on this property.

Conformance This property can be speci�ed in “VEVENT”, “VTODO”, and
“VJOURNAL” calendar components acting as the series
master.

Description This property can appear along with the “SRULE” property to
de�ne a extra series occurrences. When they both appear in a
series master component, the instances are de�ned by the
union of occurrences de�ned by both the “SDATE” and
“SRULE”.

Format De�nition

This property is de�ned by the following notation

 sdate = "SDATE" sdtparam ":" sdtval *("," sdtval) CRLF

 sdtparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE" / "PERIOD")) /
 (";" tzidparam) /

 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

 sdtval = date-time / date
 ;Value MUST match value type

EXAMPLE
The following are examples of this property:
SDATE:19970714T123000Z
SDATE;TZID=America/New_York:19970714T083000

SDATE;VALUE=PERIOD:19960403T020000Z/19960403T040000Z,
 19960404T010000Z/PT3H

SDATE;VALUE=DATE:19970101,19970120,19970217,19970421
 19970526,19970704,19970901,19971014,19971128,19971129,19971225

8.6. Series-id

Property name SERIES-ID

Purpose This property is used in conjunction with the “UID” and
“SEQUENCE” properties to identify a speci�c instance of a
“VEVENT”, “VTODO”, or “VJOURNAL” calendar component in a
series. The property value is the original value of the
“DTSTART” property of the series instance before any changes
occur.

Value type The default value type is DATE-TIME. The value type can be set
to a DATE value type. This property MUST have the same value
type as the “DTSTART” property contained within the series
component. Furthermore, this property MUST be speci�ed as a
date with local time if and only if the “DTSTART” property
contained within the series component is speci�ed as a date
with local time.

Property Parameters IANA, non-standard, value data type and time zone identi�er
parameters can be speci�ed on this property.

Conformance This property can be speci�ed zero or more times in any
iCalendar component.

p

Description

The SERIES-ID is the originally calculated value of the DTSTART property based on the
master identi�ed by the RELATED-TO property with a RELTYPE=SERIES-MASTER
parameter.

The full series of components can only be retrieved by searching
for all components with a matching RELATED-TO property.

Figure 5

If the value of the "DTSTART" property is a DATE type value, then
the value MUST be the calendar date for the series instance.

Figure 6

The DATE-TIME value is set to the time when the original series
instance would occur; meaning that if the intent is to change a
Friday meeting to Thursday, the DATE-TIME is still set to the
original Friday meeting.

Figure 7

The "SERIES-ID" property is used in conjunction with the "UID" and
"SEQUENCE" properties to identify a particular instance of an
event, to-do, or journal in the series. For a given pair of "UID"
and "SEQUENCE" property values, the "SERIES-ID" value for a series
instance is fixed.

Figure 8

Format De�nition

This property is de�ned by the following notation:

serid = "SERIES-ID" sidparam ":" sidval CRLF

sidparam = *(
 ;

 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" "VALUE" "=" ("DATE-TIME" / "DATE")) /
 (";" tzidparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

sidval = date-time / date
 ;Value MUST match value type

EXAMPLE

The following are examples of this property

SERIES-ID;VALUE=DATE:19960401

SERIES-ID;TZID=America/New_York:20170120T120000

8.7. Last series ID

Property name LAST-SERIES-ID

Purpose

To specify the last calculated instance of the series. When new instances are created they
MUST have a SERIES-ID after the value of this property.

In all respects this property is identical to SERIES-ID and is in fact a copy of the SERIES-ID
which would be present in the last created instance (assuming it is not suppressed by an
SXDATE).

Value type DATE or DATE_TIME (the default). This has the same
requirements as SERIES-ID.

Property Parameters IANA, non-standard, value data type and time zone identi�er
parameters can be speci�ed on this property.

Conformance This property MAY be speci�ed in any iCalendar component.

Description When used in a component the value of this property points to

additional information related to the component. For example,
it may reference the originating web server.

Format De�nition

This property is de�ned by the following notation:

last-series-i = "LAST-SERIES-ID" lastseriesidparam /
 (
 ";" "VALUE" "=" "TEXT"
 ":" text
)
 (
 ";" "VALUE" "=" "REFERENCE"
 ":" text
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

lastseriesidparam = *(

 ; the following is MANDATORY
 ; and MAY occur more than once

 (";" relparam) /

 ; the following are MANDATORY
 ; but MUST NOT occur more than once

 (";" fmttypeparam) /
 (";" labelparam) /
 ; labelparam is defined in ...

 ; the following is OPTIONAL
 ; and MAY occur more than once

 (";" xparam)

)

EXAMPLE

The following is an example of this property. It points to a server acting as the source
for the calendar object.
LINK;REL=SOURCE;LABEL=The Egg:http://example.com/events

8.8. Series Rule

Property name RRULE

Purpose This property de�nes a rule or repeating pattern for a series of
events, to-dos or journal entries.

Value Type RECUR

Property Parameters IANA, non-standard, look-ahead count or date property
parameters can be speci�ed on this property.

Conformance This property can be speci�ed in any “VEVENT”, “VTODO”, and
“VJOURNAL” calendar component, but it SHOULD NOT be
speci�ed more than once.

Description

The series rule, if speci�ed, is used in computing the instances to be generated for the
series. These are generated by considering the master “DTSTART” property along with the
“SRULE”, “SDATE”, and “SXDATE” properties contained within the series master. The
“DTSTART” property de�nes the �rst instance in the recurrence set which is represented
by that master event.

Unlike the RRULE the “DTSTART” property MUST be synchronized with the series rule, if
speci�ed. For example, if the DTSTARTS species a date on Wednesday but the SRULE
speci�es every Tuesday then a server or client MUSt reject the component.

The �nal series is represented by gathering all of the start DATE-TIME values generated
by any of the speci�ed “SRULE” and “SDATE” properties, and then excluding any start
DATE-TIME values speci�ed by “SXDATE” properties. This implies that start DATE- TIME
values speci�ed by “SXDATE” properties take precedence over those speci�ed by inclusion
properties (i.e., “SDATE” and “SRULE”). Where duplicate instances are generated by the
“SRULE” and “SDATE” properties, only one instance is considered. Duplicate instances are
ignored.

The “DTSTART” property speci�ed within the master iCalendar object de�nes the �rst
instance of the recurrence. In most cases, a “DTSTART” property of DATE-TIME value type
used with a series rule, should be speci�ed as a date with local time and time zone
reference to make sure all the recurrence instances start at the same local time
regardless of time zone changes.

If the duration of the series component is speci�ed with the “DTEND” or “DUE” property,
then the same exact duration will apply to all the members of the generated series. Else, if
the duration of the series master component is speci�ed with the “DURATION” property,
then the same nominal duration will apply to all the members of the generated series and
the exact duration of each instance will depend on its speci�c start time. For example,
series instances of a nominal duration of one day will have an exact duration of more or
less than 24 hours on a day where a time zone shift occurs. The duration of a speci�c
instance may be modi�ed in an exception component or simply by using an “SDATE”
property of PERIOD value type.

Format De�nition

This property is de�ned by the following notation:

srule = "SRULE" srulparam ":" recur CRLF

sruleparam = *(
 ; the following are OPTIONAL
 ; but MUST NOT occur more than once

 (";" lookahead-countparam) /
 (";" lookahead-periodparam) /

 ; the following is OPTIONAL
 ; and MAY occur more than once

 (";" xparam)

)

EXAMPLE

9. REDEFINED RELATED-TO PROPERTY

9.1. RELATED-TO

Property name RELATED-TO

Purpose This property is used to represent a relationship or reference between
one calendar component and another. The de�nition here extends the
de�nition in RFC 5545, Section 3.8.4.5 by including a section on
RELTYPE=SERIES-MASTER.

Value type URI, UID or TEXT

Conformance This property MAY be speci�ed in any iCalendar component.

Description By default or when VALUE=UID is speci�ed, the property value consists of
the persistent, globally unique identi�er of another calendar component.
This value would be represented in a calendar component by the “UID”
property.

By default, the property value points to another calendar component that
has a PARENT relationship to the referencing object. The “RELTYPE”
property parameter is used to either explicitly state the default PARENT
relationship type to the referenced calendar component or to override
the default PARENT relationship type and specify either a CHILD or
SIBLING relationship or a temporal relationship.

The PARENT relationship indicates that the calendar component is a
subordinate of the referenced calendar component. The CHILD
relationship indicates that the calendar component is a superior of the
referenced calendar component. The SIBLING relationship indicates that
the calendar component is a peer of the referenced calendar component.

The FINISHTOSTART, FINISHTOFINISH, STARTTOFINISH or
STARTTOSTART relationships de�ne temporal relationships as speci�ed
in the reltype parameter de�nition.

The SERIES-MASTER relationship when included in a series instance
refers to the master of that series. When included in a series master it
refers to a previous master in a chain of spilt series.

Changes to a calendar component referenced by this property can have
an implicit impact on the related calendar component. For example, if a
group event changes its start or end date or time, then the related,
dependent events will need to have their start and end dates changed in a
corresponding way. Similarly, if a PARENT calendar component is
cancelled or deleted, then there is an implied impact to the related CHILD
calendar components. This property is intended only to provide

information on the relationship of calendar components. It is up to the
target calendar system to maintain any property implications of this
relationship.

Format De�nition This property is de�ned by the following notation:

related = "RELATED-TO" relparam (":" text) /
 (
 ";" "VALUE" "=" "UID"
 ":" uid
)
 (
 ";" "VALUE" "=" "URI"
 ":" uri
)
 CRLF

relparam = *(
 ;
 ; The following are OPTIONAL,
 ; but MUST NOT occur more than once.
 ;
 (";" reltypeparam) /
 (";" gapparam) /
 ;
 ; The following is OPTIONAL,
 ; and MAY occur more than once.
 ;
 (";" other-param)
 ;
)

EXAMPLE
The following are examples of this property.
RELATED-TO;RELTYPE=SERIES-MASTER:19960401-080045-4000F192713

10. BACKWARDS COMPATIBILITY
Any clients following the approach speci�ed in RFC 5545 are expected to ignore any
properties or parameters they don’t recognize.

For such clients the series appears to be an unconnected set of components. They all have
their own unique UIDS. If the client updates an instance this should be identical in effect to
an update carried out by a client aware of the new properties.

Updates MUST preserve the SERIES-ID, LAST-SERIES-ID, SRULE, SDATE and SXDATE
properties. A client which does not do so is in violation of RFC 5545.

11. CALDAV EXTENSIONS
This speci�cation may extend Caldav by adding reports to return all members of a series
given the series master UID. This could be handled by the current query mechanism but it
is likely to be suf�ciently frequently used that a special query is appropriate.

It is also likely we will want a CalDAV operation to split a series and generate the
additional members of the series as a single atomic operation. == Security Considerations

Clients and servers should take care to limit the number of generated instances to a
reasonable value. This can be a relatively small value.

12. IANA CONSIDERATIONS

12.1. iCalendar Property Registrations

The following iCalendar property names have been added to the iCalendar Properties
Registry de�ned in RFC 5545, Section 8.3.2.

Table 1

Property Status Reference

LAST-SERIES-ID Current Clause 8.7

SERIES-ID Current Clause 8.6

SERIES-UID Current Clause 8.3

SDATE Current Clause 8.5

SRULE Current Clause 8.8

SXDATE Current Clause 8.4

12.2. iCalendar Property Parameter Registrations

The following iCalendar property parameter names have been added to the iCalendar
Parameters Registry de�ned in RFC 5545, Section 8.3.3.

Table 2

Parameter Status Reference

Parameter Status Reference

LOOKAHEAD-COUNT Current Clause 7.2

LOOKAHEAD-PERIOD Current Clause 7.3

SPLIT Current Clause 7.1

12.3. iCalendar RELTYPE Value Registrations

The following iCalendar “RELTYPE” values have been added to the iCalendar Relationship
Types Registry de�ned in RFC 5545, Section 8.3.8.

Table 3

Relationship Type Status Reference

SERIES-ID Current Clause 5

13. ACKNOWLEDGEMENTS
The author would like to thank the members of the Calendaring and Scheduling
Consortium technical committees and the following individuals for contributing their
ideas, support and comments:

The author would also like to thank the Calendaring and Scheduling Consortium for advice
with this speci�cation.

APPENDIX A
(INFORMATIVE)
POINTS FOR DISCUSSION

A.1. Detecting changes from old clients

If such a client updates properties in the master … what do we say here? Is there a way we
can determine that the client doesn’t realize that it’s a series? If it doesn’t then updating
the dtstart is a big deal - maybe we add a parameter to a dtstart update to indicate the
client knows it’s a series but wants to do so anyway.

Or perhaps we add a new operation - or extend patch. Simple update returns FORBIDDEN
if you try to change any of the important properties (should do that for recurrences) and
requires an explicit �ag to say you (think you) know what you’re doing.

A.2. Splitting and linking

The spec currently only allows for backward linking to previous masters. There is a
parameter added to the rule SPLIT=YES to indicate that the series was split

It makes sense to have a forward link to the new(er) series. However, a client/server may
not know what the UID is until after data is stored. The new chain can be determined vis a
query so perhaps we can leave it up to the protocols to �gure out that mechanism.

A.3. CalDAV queries

If there were a better more generalised query language such an extensions might be
unnecessary. Should we de�ne a query language speci�cally for calendaring?

APPENDIX B
(INFORMATIVE)
CHANGE LOG
2017-02-12 MD Initial version

BIBLIOGRAPHY

